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On condensation-induced waves
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Complex wave patterns caused by unsteady heat release due to cloud formation
in confined compressible flows are discussed. Two detailed numerical studies of
condensation-induced waves are carried out. First, the response of a flow of nitrogen
in a slender Laval nozzle to a sudden addition of water vapour at the nozzle entrance
is considered. Condensation occurs just downstream of the nozzle throat, which
initially leads to upstream- and downstream-moving shocks and an expansion fan
downstream of the condensation front. Then, the flow becomes oscillatory and the
expansion fan disappears, while upstream and much weaker downstream shocks are
repeatedly generated. For a lower initial humidity, only a downstream starting shock
is formed and a steady flow is established. Second, homogeneous condensation in
an unsteady expansion fan in humid nitrogen is considered. In the initial phase,
two condensation-induced shocks are found, moving upstream and downstream. The
upstream-moving shock changes the shape of the expansion fan and has a strong
influence on the condensation process itself. It is even quenching the nucleation process
locally, which leads to a renewed condensation process more downstream. This process
is repeated with asymptotically decreasing strength. The repeated interaction of the
condensation-induced shocks with the main expansion wave leads to a distortion of
the expansion wave towards its shape that can be expected on the basis of phase
equilibrium, i.e. a self-similar wave structure consisting of dry part, a plateau of
constant state and a wet part. The strengths of the condensation-induced waves, as
well for the Laval nozzle flow as for the expansion fan, appear to be in qualitative
agreement with the results from the analytical Rayleigh–Bartlmä model.

1. Introduction
Humid air brought in a supersaturated state will tend to restore equilibrium

by means of nucleation and condensation. The latter process refers to the growth
of droplets that already exist. Nucleation is the formation of the smallest stable
droplets possible and can be either heterogeneous or homogeneous. In heterogeneous
nucleation, solid particles facilitate the formation of nuclei and the number density of
droplets is determined by the concentration of these foreign nuclei. In homogeneous
nucleation, the droplets are formed by a spontaneous clustering of vapour molecules
and both number density and size of the droplets strongly depend on the time
history of the humid mixture. Homogeneous cloud formation is the predominant
process if the cooling of the gas–vapour particles is so fast that the vapour pressure,
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pv , far exceeds its saturated value, pvs , i.e. that the supersaturation, S = pv/pvs ,
becomes sufficiently high. Because the rate of droplet formation, the nucleation rate,
exponentially depends on supersaturation, the number density of homogeneously
formed droplets easily exceeds the density of condensation nuclei. Homogeneous
cloud formation occurs and is studied in Laval nozzles (Adam & Schnerr 1997), in
shock tubes (Barschdorff & Filippov 1970) and in expansion wave tubes (Holten,
Labetski & van Dongen 2005), in expansion cloud chambers (Wölk & Strey 2001), in
steam turbines (Petr, Kolovratnik & Hanzal 2003) and to some extent around airfoils
in transonic flight (Rusak & Lee 2000; Lee & Rusak 2001; Li et al. 2005).

Condensation leads to the subsequent release of latent heat, which may have a
strong impact on flow conditions. This was first reported by Prandtl (1936) for a
supersonic nozzle flow of humid air at the Volta Congress in Rome. The presence of
a so-called x-shock in an arc-shaped nozzle is caused by the condensation of water
vapour. The phenomenon was later investigated extensively, both experimentally
and theoretically. Surveys are given by Zierep (1969, 1990), Wegener (1975), Delale,
Schnerr & van Dongen (2007) and Luo et al. (2007a).

The formation of shock waves in condensing nozzle flows is directly related to
the release of latent heat. Adding heat to a supersonic flow leads to a deceleration
and a corresponding compression of the flow particles. For increasing humidity, the
compression disturbance develops into a steady shock wave upstream of the point of
latent heat release. The structure of the shock depends on the shape of the nozzle. If
the humidity of the gas is increased even more, a steady flow solution no longer exists
and condensation-induced oscillations are found, characterized by the generation of
unsteady shock waves (Adam & Schnerr 1997; Schnerr 2005).

This paper focuses on waves generated by condensation. A numerical study of
condensation-induced waves for two different situations is shown. First, the response
of the flow in a slender Laval nozzle to a discontinuous change in the humidity of
the entering gas is considered. A sudden onset of condensation occurs, which leads to
upstream- and downstream-moving shocks and to the start of flow oscillations. The
different wave patterns observed will be compared with results of a Rayleigh–Bartlmä
analysis (Bartlmä 1963, 1975), which combines the Rayleigh theory of heat addition
with unsteady gasdynamics. The second problem studied is the onset of condensation
in an unsteady rarefaction fan in humid nitrogen. As we will see, the onset of
condensation again leads to upstream- and downstream-moving secondary shocks in
agreement with the Rayleigh–Bartlmä analysis. Finally, the paper treats the changes in
the structure of the expansion fan as a result of repeated interactions of condensation-
induced weak shocks, with emphasis on the asymptotic behaviour as t → ∞.

2. Physical and numerical models
The physical and numerical models on which this analysis is based have been
extensively described by Luo et al. (2006) and Luo et al. (2007b). These models are
briefly discussed here for completeness.

We focus on dilute mixtures of vapour and droplets in a carrier gas with typical
maximum liquid mass fraction smaller than 0.02. The liquid mass fraction, g, is defined
as the ratio of the mass of the liquid droplets and the mass of the mixture. Carrier
gas and vapour have equal temperatures, which may differ from the temperature of
the droplet cloud. Vapour and carrier gas are assumed to behave as calorically perfect
gases. The vapour is sufficiently dilute to be far from its critical state. We also neglect
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the volume occupied by the liquid phase (a good approximation for small wetness
(g � 0.1)).

The fluid dynamical behaviour of the two-phase system of gas/vapour and droplets
is described by the Euler equations, supplemented with conservation laws for the first
four moment equations of the droplet size distribution function f (r; x, t)dr , being the
number density of particles with radius between r and r + dr at time t and position
x. The moment Qn is defined as

ρQn =

∫ ∞

rb

rnf dr. (2.1)

The third-order moment, Q3, is directly related to the liquid mass fraction, g, by

g = (4π/3)ρlQ3, (2.2)

with ρl the density of the liquid. It was shown by Hill (1966) that the moment
equations fully describe the droplet growth process, if the droplet growth rate is
independent of the droplet size.

The governing equation for the complete system can be written in the vectorial
form as

∂U
∂t

+
∂ F
∂x

+
∂G
∂y

= S, (2.3)

where U is the vector of unknowns, F and G represent the convective fluxes in the x

and y directions, respectively, and S is the source term:

U =

⎛
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⎞
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(2.4)

S =

⎛
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0
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3
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)
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dr
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dr
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J

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where E is the total energy per unit mass of mixture, u and v are the velocity in
the x and y directions, respectively. The critical droplet radius r∗ depends on the
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supersaturation, S: r∗ = 2σvml/(RT ln S), with surface tension, σ , molar liquid volume,
vml and universal gas constant, R. The homogeneous nucleation rate, J , is evaluated
with the internally consistent classical nucleation theory (ICCT) (Luijten 1998; Luijten,
Peeters & van Dongen 1999). The averaged droplet growth rate, dr/dt , follows from
the explicit droplet growth formulation by (Gyarmathy 1982; Peeters, Luijten & van
Dongen 2001). The temperature difference between the droplets and the surrounding
gas has been taken into account by applying a wet bulb approximation. The surface
tension of water implemented in the numerical method is based on an extrapolation
of empirical data (Lamanna 2000).

On the basis of the fractional-step-method (Oran & Boris 1987), we split the
governing equations in two parts: the homogeneous part without source terms and
the inhomogeneous part with the source terms due to phase transition. Two numerical
methods are used in this study.

2.1. The ASCE2D method

The homogeneous part is solved by applying the same method as used in VAS2D
developed by Sun (1998) and Sun & Takayama (1999) for compressible flows. For
the inhomogeneous part, the treatment by Mundinger (1994) and Prast (1997) is
followed. The combination of the two methods has been developed into a new
numerical method: ASCE2D (two-dimensional and axisymmetric adaptive solver for
condensation and evaporation) (Luo et al. 2006). In this method, the governing
equations have been discretized on an unstructured quadrilateral mesh that adapts
to the time-dependent flow. The accuracy of the present numerical method and the
influence of mesh adaptation on the convergence of the numerical results have been
investigated by Luo (2004).

2.2. The space–time CESE method

The space–time conservation element and solution element (CESE) method, invented
by Chang (1995), is adopted in order to obtain highly accurate numerical solutions for
flow problems involving both strong and weak waves. The stiff source terms introduced
by phase transition are treated implicitly by an iteration procedure proposed by Yu
& Chang (1997). For a detailed description of the implementation of this method and
the treatment of the source terms, the reader is referred to the paper by Luo et al.
(2007b).

In this study, the two numerical methods, ASCE2D and CESE, are used in different
situations. For the simulation of the condensation processes in nozzle flows, the
ASCE2D method is employed. The one-dimensional CESE method is applied to
simulate the condensing flows in rarefaction waves. Mesh convergence is briefly
discussed in Appendix A.

3. Effects of heat addition to steady and unsteady flow
Considering the case of a dilute vapour in a carrier gas, the whole thermal process
of condensation can be interpreted as heat addition to the inert carrier gas due to
the condensation of vapour, which is the classical Rayleigh problem of heat added
to a one-dimensional flow of a given Mach number. We shall restrict ourselves to a
calorically perfect gas and follow closely the analysis as summarized by Zierep (1990).
Details are given in Appendix B.
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Figure 1. (a) The definition of the Rayleigh problem. (b) Maximum relative heat flow
as a function of flow Mach number. γ = 1.4.

Let us assume a one-dimensional flow in positive x direction. At x = 0, a heat flow,
q , is added to the flow per unit mass of mixture equal to

q = κh0 = κ
(

1
2
u2 + h

)
, (3.1)

in which the enthalpy, h, and the velocity, u, refer to the flow upstream of heat
addition, see figure 1(a). The subscript ‘0’ refers to isentropic stagnation conditions.
By applying the conservations of mass, momentum and energy across the heat addition
area, the solution to this problem is straightforward.

For a given flow Mach number, steady-state solutions are possible only for a limited
range of the heat addition parameters: κ � κmax , which is shown in figure 1(b). It
is clear that at near sonic conditions, the capacity of the flow to absorb any heat in
steady state becomes limited. This explains why for flows in slender nozzles, in which
the release of latent heat may occur at a flow Mach number slightly above unity, this
maximum value of κ is easily exceeded. In that case, a steady-state solution is not
possible and the flow becomes periodic.

Waves generated by unsteady heat release have been considered in great detail by
Bartlmä (1963, 1975) and Schnerr (2005). We shall apply the concepts, first described
by Bartlmä, to a flow of a given Mach number, M1, to which a constant heat flow
of relative strength κ is added, starting at t = 0. Figure 2 gives an overview of the
three different wave patterns to be expected and of the nomenclature of the different
constant states. Details are given in Appendix B and can also be found in the survey by
Delale et al. (2007). We shall briefly describe the three different regimes. For sufficiently
low values of upstream flow Mach number M1 and parameter κ , to be specified later,
we observe an upstream-moving shock Su, a downstream-moving shock Sd and a
contact discontinuity, CD (regime a). An increase of M1 leads to an increase of flow
Mach number M3 (see figure 2), until this flow Mach number becomes unity and
thermal choking occurs. Then, an additional expansion fan (E) is necessary to satisfy
the conservation laws (regime b). A further increase in M1 leads to the disappearance
of the left-running shock (regime c). In fact, the left-running shock then merges with
the discontinuity caused by heat addition. In that case, the entrance flow is always
supersonic.

The pressure and temperature profiles, obtained from numerical simulations
(ASCE2D), for κ = 0.1 are also shown in figure 2 to facilitate the understanding of
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Figure 2. (a–c) Space–time diagrams of the wave pattern caused by onset of heat release. (d–f )
Pressure and temperature profiles of the wave pattern by numerical simulation for κ = 0.1 and
incoming flow Mach number 0.8, 1.1 and 1.6, respectively. Su, upstream-moving shock wave;
Sd , downstream-moving shock wave; E, expansion wave; CD, contact discontinuity. Heat is
added in the shaded area.

the wave patterns. The incoming flow Mach numbers are 0.8, 1.1 and 1.6, respectively.
The shaded area indicates where the heat is added. Figure 3 illustrates the pressure
profiles for different incoming flow Mach numbers at the same time. The upstream-
moving shock speed decreases (in this reference frame), while its strength increases
with increasing incoming flow Mach number (see lines 1 and 2). When the incoming
flow Mach number reaches a critical value, the upstream-moving shock and the heat
addition discontinuity merge into one discontinuity at the plane of heat addition,
x = 0 (see line 3). A further increase of the incoming flow Mach number will not
change this situation, but will move the expansion fan more downstream (see line 4).

The strengths of upstream- and downstream-moving shocks in terms of relative
pressure changes are illustrated in figure 4(a). Results are given as functions of
M1 for γ = 1.4 and for different κ: 0.01, 0.05 and 0.1. Above a limiting value
of M1, no upstream shock is possible (regime c). In general, the upstream-moving
shock, if present, is stronger than the downstream-moving shock. For flow Mach
numbers of about 0.5, the difference becomes quite significant. The larger the heat
addition parameter κ , the stronger are both shock waves, and the larger the critical
incoming flow Mach number. The solid curves represent a linearized solution of the
conservation laws for heat addition as explained in Appendix B. The solution is
remarkably accurate for both upstream and downstream shocks, except near M1 = 1,
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Figure 3. Pressure profiles for different incoming flow Mach numbers at the same moment.
Su, upstream moving shock; E, expansion wave. The shaded area indicates where the heat is
added. κ = 0.1. Lines 1, 2 and 4 represent pressure profiles of wave patterns (a), (b) and (c),
respectively. Line 3 illustrates the critical state between patterns (b) and (c).
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where a singular behaviour is found, caused by the linearization. The different regimes
can be mapped in a κ–M plane as shown in figure 4(b) for γ = 1.4.

4. The onset of condensation in a slender Laval nozzle
Detailed experimental and numerical studies on condensing flows in the slender
supersonic nozzle G2 have been reported by Lamanna, van Poppel & van Dongen
(2002) and Luo et al. (2006, 2007a). Here we focus on a simulation such that, first,
a steady solution of dry nitrogen flow is obtained. Then, humid nitrogen is replacing
dry nitrogen and a condensation process starts. The shape and the steady solution of
a dry nitrogen flow in nozzle G2 are shown in figure 5. The stagnation conditions are
p0 = 8.67 × 104 Pa, T0 = 296.6 K.
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Figure 5. The shape of the supersonic nozzle G2 (solid line) and profiles of pressure (dash-
dotted line), temperature (dashed line) and Mach number (dotted line) along the nozzle axis.
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Figure 6. Numerical results for humid nitrogen flow with Sini = 0.517 in nozzle G2
(ASCE2D): (a) iso-lines of density with an increment of 0.01 kg m−3; (b) iso-lines of pressure
with an increment of 1000 Pa in a space–time diagram, a close-up look near the onset point.
After 5 ms, humid nitrogen starts to pass the nozzle throat, leading to condensation- and
condensation-induced waves. After its initial stage, the condensation process becomes periodic.
UW, upstream moving wave; DW, downstream moving wave; CD, contact discontinuity; E,
expansion wave.

The initial saturation ratio of the humid nitrogen is Sini = 0.517. Results are shown
in the form of iso-density lines in a space–time diagram; see figure 6(a). The density
range is from 0.21 to 0.97 kg m−3 with a contour increment of 0.01 kg m−3. The
densities are evaluated along the nozzle axis. We can estimate the position of the
condensation onset from the two waves, which is approximately 3.6 mm downstream
of the nozzle throat (xT = 0), so that the Mach number at the onset of condensation
is about 1.02. The value of the heat addition parameter due to condensation can be
deduced from the liquid mass fraction and is about κ = 0.01. These onset conditions
correspond with the square point in figure 4(b), so that wave pattern (b) is to be
expected. From the iso-pressure lines of figure 6(b) (pressure increments 1000 Pa), the
upstream- and downstream-moving waves induced by condensation can be recognized,
the upstream-moving wave (UW) being clearly much stronger than the downstream
one (DW), as predicted by the theory discussed before. By comparing the iso-density
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Figure 7. Numerical iso-lines of density with an increment of 0.01 kg m−3 (a) and pressure
with an increment of 1000 Pa (b) in a space–time diagram for nitrogen flow in nozzle G2
(ASCE2D). After 5 ms, humid nitrogen starts to pass the nozzle throat, leading to condensation-
and condensation-induced waves (regime c). After its initial stage, the condensation process
becomes steady. Initial saturation ratio is Sini = 0.182.

lines with the pressure lines, the contact surface (CD) and the expansion waves (E)
can be identified typical for the wave pattern of regime (b). After the start of the
condensation process, the flow becomes oscillatory. The point of onset of condensation
shifts more downstream, while the local Mach number becomes subsonic. This implies
a repeated wave pattern of regime (a) for the oscillation period, which can be directly
found in figure 6.

If we reduce the humidity level (e.g. Sini = 0.182 as shown in figure 7), the point
of onset of condensation will shift downstream to a higher flow Mach number (e.g.
1.20 in figure 7). Then, we arrive in regime (c), observing a downstream moving
shock only and the establishment of a steady condensing flow for flow conditions
that approximately correspond to the cross-point in figure 4(b).

5. Homogeneous condensation in unsteady rarefaction waves, initial stage
It was observed, among others, by Sislian & Glass (1976) that cloud formation occurs
in the rarefaction wave in a shock tube, when the driver section is filled with a humid
gas. A numerical, analytical and experimental investigation of rarefaction waves in
humid nitrogen was carried out by Smolders, Niessen & van Dongen (1989, 1992)
and Smolders & van Dongen (1992). The nucleation process in their experiments was
heterogeneous, because condensation nuclei, chromium oxide particles, were added
to the gas. They also analysed the asymptotic behaviour of the expansion process as
t → ∞ to verify that the self-similar character, i.e. the x/t dependence of the wave,
is restored asymptotically with the equilibrium speed of sound as the relevant scaling
parameter (Smolders et al. 1992; van Dongen 2001). Homogeneous condensation
in the expansion wave in a Ludwieg tube has been studied experimentally by Luo
et al. (2007a). Their results have been compared with numerical simulations using the
ASCE2D method (Luo et al. 2007a) and with simulations on the basis of the CESE
method by Luo et al. (2007b). They reported repeated condensation phenomena due
to the interaction of condensation-induced shock waves with the rarefaction front.
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Figure 8. Shock tube problem in humid nitrogen. For initial state see the text. CESE method:
(a) space–time diagram of shock tube problem. The shaded area (HA) indicates where heat
release is to be expected. (b) Temperature contours with an increment of 2 K in space–time
diagram. (c) Pressure contours with an increment of 1000 Pa in space–time diagram. (d )
Snapshots of pressure as a function of reduced coordinate for different times in the initial
stage. SW, shock wave; CD, contact discontinuity; EF, expansion fan; UW, upstream-moving
wave; CS, condensation-induced shock wave; DW, downstream-moving wave.

Chirikhin (2007) numerically investigated the formation of a condensation shock in
the high pressure section of a shock tube and found that in a fairly long channel, a
periodic structure consisting of an alternating sequence of condensation shocks may
be formed.

In this study, we consider the condensation phenomena in the high pressure section
of a shock tube, filled with humid nitrogen. The numerical analysis is based on the
ASCE2D method. The initial state (4) of the humid nitrogen in the high pressure
section is p4 = 1 bar, Sini = 0.82, T4 = 295 K. The initial state (1) in the low pressure
section is dry nitrogen, p1 = 0.3 bar, T1 = 295 K. The wave pattern after removal of
the diaphragm is shown in figure 8(a). A primary shock wave (SW) is running to the
right into the low pressure section, an expansion fan or rarefaction fan (EF) is running
to the left into the high pressure gas–vapour mixture. Because of the adiabatic cooling
in the expansion fan, the gas becomes supersaturated and condensation occurs. The
shaded area indicates where heat release is to be expected. Note that the locus of
heat release moves with respect to the nitrogen flow with the local speed of sound in
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good approximation. As a result of heat release, weak secondary shock waves will be
generated according to the model discussed before (dashed lines, originating at the
dashed contact surface). The left-running one is relatively strong and will overtake the
characteristics of the expansion fan (see van Dongen et al. 2002 and Delale et al.
2007).

Temperature and pressure contours in the space–time diagram obtained with the
numerical model (CESE) are shown in figure 8(b, c). It is quite clear that after
some delay the heat addition due to condensation starts to affect the flow by
generating a series of upstream-moving compression waves (UW), which eventually
form a condensation induced shock (CS). The contours also show the presence of
a downstream-moving shock, which interacts with the main shock. The combined
upstream- and downstream-moving shock waves without an intermediate additional
expansion fan can be characterized as wave pattern regime (a) of figure 2; see the
asterisk point in figure 4(b). Snapshots of the pressure as a function of the reduced
coordinate x/(c0t) at different times are depicted in figure 8(d ) for the initial phase
of the condensation process.

After the startup stage, the wave pattern continues to be affected by condensation.
The condensation shock moves upstream, which leads to a temperature increase at
the locus of the onset of nucleation. This is shown in figure 9, in which snapshots of
pressure, p, temperature, T , supersaturation, S, and nucleation rate, Jn, are depicted
as functions of the reduced coordinate x/(c0t). The shock wave causes nucleation to be
quenched locally, which in turn weakens the shock strength. Far enough downstream
of the condensation shock, a second zone of high supersaturation is formed and a
renewed strong condensation takes place there, which leads to a second condensation
shock moving upstream (see the supersaturation and nucleation rate curves of instants
4 and 5 in figure 9).

6. Homogeneous condensation in unsteady rarefaction waves,
long-term behaviour
As pointed out in § 5, the condensation process in an unsteady expansion wave
leads to additional unsteadiness, which is characterized by the formation and decay
of condensation-induced weak shocks. This is illustrated in figure 10(a), in which
the pressure as a function of time is shown for a fixed value of the reduced
coordinate: x/(c0t) = −0.5, which is inside the expansion wave at a locus where
the different condensation induced waves can be clearly observed. The condensation
process generates a ‘delayed’ and damped oscillation as time proceeds.

What we observe is a repeated process of new condensation-induced waves
formed, which are ‘absorbed’ in the main expansion wave, thereby modifying its
shape. It was shown in a previous study by Smolders & van Dongen (1992) for a
simplified heterogeneous condensation model that the shape of the main expansion
wave gradually changes to the solution to be expected on the basis of equilibrium
gasdynamics for a wet gas–vapour mixture. The question is whether such behaviour
will also be found for the much more complicated homogeneous nucleation and
droplet growth process. Before we proceed with the numerical analysis, we shall first
recall the non-trivial properties of an expansion fan in a two-phase mixture in phase
equilibrium. Such a solution is characterized by wave splitting. This is caused by the
peculiar behaviour of the equilibrium sound speed when passing the border between
‘wet’ and ‘dry’ for an isentropic change of the thermodynamic state. The reason is
that the vapour mass fraction is constant as long as the mixture does not contain any
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Figure 9. The development of the second condensation zone. Snapshots of pressure,
temperature, saturation ratio and nucleation rate as functions of a reduced spatial coordinate
at different times: 1, 0.2 ms; 2, 0.5 ms; 3, 1.0 ms; 4, 1.98 ms; 5, 4.998 ms; 6, 100 ms; 7, 1001 ms;
8, 10 010 ms. Dotted line represents the frozen value.
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Figure 10. Pressure as a function of time at one fixed value of the reduced coordinate
x/(c0t) = −0.5 with c0 as the initial speed of sound in the driver section.

liquid, but that it is subjected to the Clausius–Clapeyron law in the presence of liquid.
The equilibrium sound speed decreases approximately 10 % for the humid nitrogen
mixtures studied at the passage from dry to wet. The equilibrium solution for the
isentropic response to a discontinuous expansion is a similarity solution that follows
from basic gasdynamics (Thompson 1972). Let us define the initial state at rest with
pressure, p0, and entropy, s0. Then, for a left-running expansion fan the solution only
is a function of (x/t) and can formally be written as follows:

x/t = u − c(p, s0). (6.1)

The Riemann invariant that holds for the whole domain is

u + Γ (p, s0) = 0, (6.2)

with the gasdynamic variable Γ defined as:

Γ (p, s0) =

∫ p

p0

1

ρ(p, s0)c(p, s0)
dp. (6.3)

Equations (6.1)–(6.3) yield the velocity and pressure as a function of (x/t) for a given
initial state and for a given equation of state for the gas–vapour mixture. Let us
assume that the initial state is a dry one and that the expansion is sufficiently deep
such that liquid is formed. At a certain state, indicated by subscript ‘dw’, the transition
from dry to wet occurs. There the sound speed jumps from its dry value cd to its lower
wet value cw . There is no reason why the velocity or the thermodynamic state would
change. As a consequence, according to (6.1), a plateau of constant state, extending
from x/t = (udw − cd) until x/t � (udw − cw), will separate the dry and wet part of
the expansion fan. The procedure to solve the problem for a mixture of calorically
perfect gases is given in Appendix C. Figure 11 shows the asymptotic solution for the
pressure, p, the temperature, T , the liquid mass fraction, g, and the saturation ratio, S,
as functions of the reduced coordinate x/(c0t), together with the fully ‘frozen’ solution.
Numerical results refer to four different instants of time. We recognize the first dry
part of the expansion fan, the plateau of constant state separating the dry and wet
part and the wet part of the wave in which the liquid mass fraction increases from 0
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Figure 11. The unsteady expansion fan in humid nitrogen. Long-term behaviour. Numerical
results (CESE, solid lines) for the pressure, temperature, liquid mass fraction and saturation
ratio as functions of reduced coordinate at four different moments – 1, 2561 s; 2, 5.154 ×106 s;
3, 4.123 × 107 s; 4, 2.639 × 109 s. The dotted line denotes equilibrium solution with wet and
dry parts, and the dashed line denotes frozen solution.

to its final value of 0.009. The pressure downstream the wave is not so much affected
by condensation. Temperature (and density) certainly are significantly different. The
temperature change after the passage of the wave in case of condensation is only
half of its ‘frozen’ value. The saturation ratio shows relaxation towards unity in the
wet part of the solution. It is clear that the numerical solution shows the expected
asymptotic behaviour towards the phase equilibrium solution as t → ∞.

7. Conclusions
Unsteady heat release due to the onset of nucleation and condensation in a quasi-one-
dimensional flow leads to different types of wave patterns. We have found that these
wave patterns can be qualitatively understood by means of a one-dimensional-model,
originally proposed by Bartlmä, that combines the classical Rayleigh theory of heat
addition with the gas dynamic laws for the different wave types involved. We have
applied this model to the case of heat addition at a fixed plane, with strength κ , to
a uniform flow of arbitrary Mach number. Three different regimes of wave patterns
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have been found in the κ–M plane. The upstream-moving shock wave, if present
at all, is much stronger than the downstream-moving wave in transonic flow. This
explains why in the quasi-one-dimensional flow of a humid gas in a Laval nozzle only
upstream-moving shocks have been observed. Linear theory gives accurate results for
moderate heat addition, except near transonic conditions. The upstream motion of
shock waves in a supersonic flow can only be explained with nonlinear theory.

A numerical analysis of the flow of nitrogen in a slender supersonic nozzle G2, in
which dry nitrogen is replaced by humid nitrogen in a stepwise manner, has shown
that the onset of condensation may lead to the complete wave pattern in terms
of the Bartlmä analysis including both shock waves, the contact surface and the
expansion fan. After the initial condensation process, the flow becomes oscillatory,
with repeated upstream and downstream shocks, without an expansion fan. For a
lower initial humidity, condensation occurs more downstream, at a higher flow Mach
number, and as expected only a downstream-moving shock is observed.

The simple wave model for unsteady heat addition can also be used as an
approximate description of the initial effects of condensation and latent heat release
caused by a strong one-dimensional rarefaction fan in a humid gas. Because the
condensation front follows the tail of the expansion wave with some delay, the
relative flow Mach number of the condensation front is always close to unity. In
our numerical analysis of the problem we could observe regime (a), upstream- and
downstream-moving shocks in agreement with the unsteady heat addition model.

The structure of the expansion fan is modified by the condensation-induced waves.
The upstream-moving shock even affects the local thermodynamic state such that the
nucleation and condensation process is locally quenched. Far enough downstream
of the condensation shock a second zone of high supersaturation is formed and a
renewed strong condensation takes place there, which leads to a second condensation
shock moving upstream. This process repeats and forms a ‘delayed’ and damped
oscillation. This process has been analysed in terms of the approach to the full phase
equilibrium solution. It was shown that the structure of such an equilibrium expansion
wave is determined by the peculiar behaviour of the equilibrium sound speed, which
jumps from its ‘dry’ value to its lower ‘wet’ value at the onset of liquid formation.
As a consequence, the expansion fan shows a split structure and consists of a ‘dry’
part, a plateau of constant state and a ‘wet’ part. The full numerical solution of the
problem appears to converge to the analytical equilibrium solution as t → ∞. The
results shown are particularly important for understanding the whole process of the
interaction of condensation phenomena, condensation-induced waves and flows. They
are not directly of practical value because of the large equilibration times involved.
It would be interesting to extend the analysis to waves in pure vapours, with much
higher nucleation rates.
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Foundation of China under grant 10776013 and the Open Foundation of the
Key Laboratory of High Temperature Gas Dynamics (LHD), Chinese Academy
of Sciences. Part of this research was carried out within the framework of the J. M.
Burgerscentrum, Research School for Fluid Mechanics of the Netherlands.

Appendix A. Mesh study of simulation cases
Case 1. Condensing flows in the supersonic nozzle G2, ASCE2D method
Details on the numerical simulation of condensation in nozzle G2 with the ASCE2D
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method, including a mesh study, are given by Luo (2004) and Luo et al. (2006). The
mesh size adopted for the present work is about 2 × 2 mm2 with an adaptation level
of 4.

Case 2. Condensation in unsteady rarefaction waves, initial stage, CESE method
Condensing flow in shock tube has been studied by Luo et al. (2007b) and Cheng
et al. (2010) using the CESE method, including the grid study. They concluded that
the order of accuracy of the CESE method in computing the present problem in
L1-norm is about 1.49. They also found that results with grid sizes of 0.05 mm and
0.025 mm do not show a visible difference in the shock shape. Based on this study, a
grid size of 0.025 mm is chosen in this study.

Case 3. Condensation in unsteady rarefaction waves, long-term behaviour, CESE method
When long-term behaviour is considered, as time proceeds the source term’s stiffness
becomes weaker and a coarser grid can then be applied. To reduce the computing
time, a changing grid size has been applied as suggested by Smolders et al. (1992).
Specifically, after each 20 000 time steps, the grid size is doubled, which implies that
the computational domain is doubled. The time step is also doubled in order to keep
the CFL number constant throughout the calculation.

Appendix B. Rayleigh–Bartlmä theory for unsteady heat addition
We first consider the steady case as shown in figure 1(a) (Zierep 1990; Delale et al.

2007). Conservation of mass, momentum and energy connects the upstream state with
the downstream state, indicated by a ‘hat’:

ρ̂û = ρu, p̂ + ρ̂û2 = p + ρu2, (B 1)

1
2
û2 + ĥ =

(
1
2
u2 + h

)
(1 + κ), (B 2)

where ρ and p are the gas density and the gas pressure, respectively. This leads to
p = ρRT and h = γ /(γ −1)RT , where R is the gas constant, T is the gas temperature
and γ is the specific heat ratio, to the following expressions:

I ≡

√(
γ +

1

M2

)2

− 2(γ + 1)

(
1

M2
+

γ − 1

2

)
(1 + κ), (B 3)

û

u
=

ρ

ρ̂
= F ±

u (M, κ) =
1

γ + 1

(
γ +

1

M2
± I

)
, (B 4)

p̂

p
= F ±

p (M, κ) =
M2

γ + 1

(
γ +

1

M2
∓ γ I

)
, (B 5)

M̂ = F ±
m (M, κ) =

√
γ + 1

M2 ± I

γ + 1
M2 ∓ γ I

. (B 6)

In principle, there are two different branches of the solution, indicated by (±).
They coincide if I = 0, which corresponds with the thermal choking condition,
M̂ = 1. Solutions for finite κ in which the flow jumps from supersonic to subsonic
(strong compression) or from subsonic to supersonic (strong expansion) are physically
excluded (Landau & Lifshitz 1959). Consequently, only weak solutions exist with
M̂ = 1 as limiting cases. In analogy with the theory of detonation, such a thermal
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choking condition is sometimes referred to as a Chapman–Jouguet condensation
discontinuity. Equation (B 3), with I = 0, yields directly the maximum heat addition
possible, κmax , for a flow of given Mach number:

κmax =
(1 − M2)2

2(γ + 1)M2

(
1 +

γ − 1

2
M2

) , (B 7)

which is shown in figure 1(b). It will turn out to be useful to consider also the
linearized solution of (B 1) and (B 2). It can easily be derived that

p̂ − p

p
= κ

γM2

M2 − 1

T0

T
, (B 8)

û − u

c
= −κ

M

M2 − 1

T0

T
. (B 9)

It is clear that linearization always fails near sonic conditions.
Then we consider the unsteady case. Heat is added to a flow with Mach number

M1 at x = 0 in a compact manner so that the jump relations (B 1)–(B 6) apply for the
transition at the plane of heat release x = 0. However, the condition upstream of the
plane of heat release (state 2 in figure 2) is affected by the upstream-moving shock (if
present), such that in general M2 � M1. Downstream of the plane of heat addition,
a contact discontinuity separates states of different entropy (4) and (5), with equal
pressures and velocities. We shall distinguish three different wave patterns as shown
in figure 2.

Regime (a). Subsonic or transonic flow, M3 < 1, no choking
If both M2 < 1 and M3 < 1, the different regimes are connected in a straightforward
manner. States (1)–(2) and (5)–(6) are connected by ordinary shock relations, which
are in fact given by the (–) branches of relations (B 3)–(B 6) for κ = 0. It should be
realized that the Mach number in relations (B 3)–(B 6) then refers to the relative
velocity between the wave and the gas in which the wave propagates. In this case,
there is no expansion fan; see figure 2(a).

Regime (b). M3 = 1, M2 < 1, choking
For κ fixed and M1 increasing, there will be a point at which the Mach number
M3 becomes unity: thermal choking. In that case, the upstream shock Mach number
and the corresponding post-shock state, M2, are fixed and are fully determined by
the choking condition. We then need an additional wave to find a solution for
the downstream shock strength: an expansion fan. In this case, the wave pattern
is complete, as shown in figure 2(b). Because of the thermal choking, the leftmost
characteristic line of the expansion fan coincides with the t axis, which implies that
zone (3) is located at just downstream of the heat addition point, i.e. x = 0+.

The additional equations connecting states (3) and (4) follow from the Riemann
invariants for a left-running expansion fan and constant entropy (Courant &
Friedrichs 1985):

u3 +
2c3

γ − 1
= u4 +

2c3

γ − 1
,

c3

c4

=

(
p3

p4

)γ −1/2γ

. (B 10)
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The solution holds for supersonic flows, M1 > 1, provided that the strength of the
upstream shock is sufficient to move upstream. In this regime, the Mach number M2

is always smaller than unity, the flow entering the plane of heat addition is subsonic.
In the limiting case, in which the velocity of the upstream-moving shock has just
become zero, the shock coincides with the heat addition jump for choked subsonic
flow, which is identical with the ‘choking’ solution for supersonic flow.

Regime (c). M1 > 1, M3 > 1, supersonic, no choking, no upstream shock
If the flow Mach number M1 is sufficiently large, there is no upstream disturbance
and the flow decelerates to a fixed downstream Mach number M3 < M1, which leads
to a compression. In order to match the post-shock conditions of the downstream
shock, the expansion fan remains essential, and the actual wave diagram reduces to
figure 2(c).

Appendix C. Equilibrium solution for a rarefaction fan
Consider a certain undersaturated mixture with pressure p0, temperature T0 and

vapour fraction g0, which is expanded isentropically, with entropy s0, in a stepwise
manner. From gasdynamics and the simple wave principle (Thompson 1972), a
similarity solution for a left-running expansion fan reads:

x/t = u − c(p, s0) = −Γ (p, s0) − c(p, s0), (C 1)

with the gasdynamic variable Γ defined as

Γ =

∫ p

p0

1

ρ(p, s0)c(p, s0)
dp. (C 2)

Here c is the equilibrium sound speed. This is the implicit equation to be solved for c as
a function of x/t . This is a very general solution that holds for any gas/vapour/liquid
mixture in thermodynamic equilibrium. The formulation for a gas–vapour mixture is
closed by specifying the thermodynamic properties of the gas–vapour–liquid mixture.
We shall assume that gas and vapour behave calorically perfect with specific heats
cpg, cpv, cvg, cvv with a constant specific heat of the liquid cl and a linear dependence
of latent heat on temperature L = L0 + (cpv − cl)T .

For an undersaturated vapour, the vapour mass fraction is fixed and equals g0

because the liquid mass fraction g is zero. For a wet mixture, pv equals its saturation
value, i.e. pvs , which is a known function of temperature. In that case g0 −g = f (p, T ).
The next step is to consider the enthalpy of the mixture: h = cpT + (g0 − g)L0. The
mixture-specific heat is cp = (1 − g0)cpg + (g0 − g)cpv + gcl . The condition that the
entropy is constant is equivalent to dh = 1/ρdp. This gives a relation between dT

and dp:

dT =
1

cpρ
dp +

L

cp

dg. (C 3)

Here dg denotes the change of liquid mass fraction, which is basically a function of
T and p. The equation of state for the mixture is p = ρ[(1 − g0)Rg + (g0 − g)Rv]T .
The ‘dry’ equilibrium sound speed follows from c2

d = γRT , with γ = cp/(cp − R), and
R = (1 − g0)Rg + (g0 − g)Rv . The equilibrium sound speed for a wet mixture can be
evaluated as

c2
w = c2

d

[1 + ζ 2(γ − 1)/γ − 1](pvs/p)

1 + (γ − 1)(ζ − 1)2(pvs/p)
, (C 4)
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with ζ = L/(RvT ). In a formal sense, this is the complete solution. A consequence
of the jump in sound speed is that a plateau of constant state is formed because the
velocity u is continuous.
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